- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
An, Ke (1)
-
Chen, Wei (1)
-
Chen, Wen (1)
-
Chen, Yan (1)
-
Fan, Xuesong (1)
-
Hosemann, Peter (1)
-
Kim, George (1)
-
Li, Tianyi (1)
-
Liaw, Peter K. (1)
-
Mooraj, Shahryar (1)
-
Samuha, Shmuel (1)
-
Tiley, Jaimie S. (1)
-
Xie, Yujun (1)
-
Yu, Dunji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Laser powder-bed fusion (L-PBF) additive manufacturing presents ample opportunities to produce net-shape parts. The complex laser-powder interactions result in high cooling rates that often lead to unique microstructures and excellent mechanical properties. Refractory high-entropy alloys show great potential for high-temperature applications but are notoriously difficult to process by additive processes due to their sensitivity to cracking and defects, such as un-melted powders and keyholes. Here, we present a method based on a normalized model-based processing diagram to achieve a nearly defect-free TiZrNbTa alloy via in-situ alloying of elemental powders during L-PBF. Compared to its as-cast counterpart, the as-printed TiZrNbTa exhibits comparable mechanical properties but with enhanced elastic isotropy. This method has good potential for other refractory alloy systems based on in-situ alloying of elemental powders, thereby creating new opportunities to rapidly expand the collection of processable refractory materials via L-PBF.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
